2017

(5th Semester)

COMMERCE

Paper No.: BC-503

(Business Mathematics and Computer Application)

(PART : A-OBJECTIVE)

(Marks : 25)

The figures in the margin indicate full marks for the questions

SECTION-I

(Marks: 15)

(a)	The	number determina		columns always	of be

(b) In a matrix, if AB = BA, it is known as

1. Fill in the blanks:

	(c)	The a	method	ite	obtaining function	is	derivative know	of as	
					osawie				
,	(d)	code	es 0 and	1 to	represent	puter	uses bir nformation	nary	
						TSLAS		•	
	(e)	to th	he world.				elecom gate		
	mort .			mai i		argan			*
2.	Ind	icate ie (T)	whether or False	er tl	ne followi by putting	ng s a Tic	tatements k (🗸) marl	: 2	5=5
						. e.	emstd out a		
	(a)	Sar	rus meth	nod i	s used for	all ty	pes of orde	er.	
			ayawta				(T /	F)	
	(b)	The	diagona	lofa	skew-sym	metric	matrix is a	zero.	
				·			(T /		

(d) ALU stands for Arithmetic and Logic Unit. (T / (e) Train topology is one of the most commonly us topologies in multinational organizations. (T / 3. Tick (I) the correct answer in the brackets provided (a) Determinant is a method which is used by (i) business organizations () (ii) economists () (iii) Both (i) and (ii) () (iv) None of the above () (b) A matrix is orthogonal, if (i) A'A = I () (ii) A^2 = A () (iii) A'A = A () (iv) A = O ()		(c)	The method of finding the derivative function applying the definition of derivative also known as delta method.
 (e) Train topology is one of the most commonly us topologies in multinational organizations. (T / 3. Tick (✓) the correct answer in the brackets provided (a) Determinant is a method which is used by (i) business organizations () (ii) economists () (iii) Both (i) and (ii) () (iv) None of the above () (b) A matrix is orthogonal, if (i) A'A = I () (ii) A² = A () (iii) A'A = A () 			
 (e) Train topology is one of the most commonly us topologies in multinational organizations. (T / 3. Tick (✓) the correct answer in the brackets provided (a) Determinant is a method which is used by (i) business organizations () (ii) economists () (iii) Both (i) and (ii) () (iv) None of the above () (b) A matrix is orthogonal, if (i) A'A = I () (ii) A² = A () (iii) A'A = A () 		(d)	ALU stands for Arithmetic and Logic Unit.
topologies in multinational organizations. (T / 3. Tick (✓) the correct answer in the brackets provided (a) Determinant is a method which is used by (i) business organizations () (ii) economists () (iii) Both (i) and (ii) () (iv) None of the above () (b) A matrix is orthogonal, if (i) A'A = I () (ii) A ² = A () (iii) A'A = A ()			(T /
 3. Tick (✓) the correct answer in the brackets provided (a) Determinant is a method which is used by (i) business organizations () (ii) economists () (iii) Both (i) and (ii) () (iv) None of the above () (b) A matrix is orthogonal, if (i) A'A = I () (ii) A² = A () (iii) A'A = A () 		(e)	
 (a) Determinant is a method which is used by (i) business organizations () (ii) economists () (iii) Both (i) and (ii) () (iv) None of the above () (b) A matrix is orthogonal, if (i) A'A = I () (ii) A² = A () (iii) A'A = A () 			
(i) business organizations () (ii) economists () (iii) Both (i) and (ii) () (iv) None of the above () (b) A matrix is orthogonal, if (i) A'A = I () (ii) A^2 = A () (iii) A'A = A ()	3.	Tic	
(ii) economists () (iii) Both (i) and (ii) () (iv) None of the above () (b) A matrix is orthogonal, if (i) A'A = I () (ii) A^2 = A () (iii) A'A = A ()		(a)	Determinant is a method which is used by
(iii) Both (i) and (ii) () (iv) None of the above () (b) A matrix is orthogonal, if (i) A'A = I () (ii) A^2 = A () (iii) A'A = A ()			(i) business organizations ()
(iv) None of the above () (b) A matrix is orthogonal, if (i) $A'A = I$ () (ii) $A^2 = A$ () (iii) $A'A = A$ ()			(ii) economists ()
(b) A matrix is orthogonal, if (i) $A'A = I$ () (ii) $A^2 = A$ () (iii) $A'A = A$ ()			(iii) Both (i) and (ii) ()
(i) $A'A = I$ () (ii) $A^2 = A$ () (iii) $A'A = A$ ()			
(ii) $A^2 = A$ () (iii) $A'A = A$ ()		(b)	A matrix is orthogonal, if
(ii) $A^2 = A$ () (iii) $A'A = A$ ()			(i) $A'A = I$ ()
(iii) $A'A = A$ ()			(ii) $A^2 = A \cdot ($
(iv) $A = 0$ () bottom relevant (a)			(iii) $A'A = A$ ()
	•		(iv) $A = 0$ () bottom recover (a)

	(4)
(c)	E-service can be defined as
	(i) E-service = E-commerce + E-business ()
	(ii) E-service = E-commerce - E-business ()
	(iii) E-service = E-commerce × E-business ()
	(iv) E-service + E-commerce = E-business ()
	/e/ The sin topology is one of the most community a
(d)	A tree topology combines the characteristics of
	(i) bus and star ()
	(ii) bus and hybrid ()
	(iii) ring and bus ()
	(iv) ring and star ()
	1 1 mg 1
	() aroundous mi)
(e)	When a variable is changed by differentiation keeping other variables constant, it is known as
	(i) partial derivative (iii) remain A
	(ii) chain rule ()
	(iii) Euler's theorem ()
	(iv) division method ()

SECTION-II

(Marks: 10)

- 4. Answer the following questions:
 - (a) Write any two properties of determinant.

(b) Construct an $m \times n$ matrix.

(c) Calculate the average revenue function at q = 5, for the total revenue function, $R = 15 + 10q + q^2$.

(d) Explain any two harmful effects of a computer.

(e) What do you mean by a binary number system?