BMCA/BO-563/134

nethod of 2 0 1 5 lo bodism

KIJOWIJ RS

(5th Semester)

COMMERCE

Paper No.: BC-503

(Business Mathematics and Computer Application)

(PART : A-OBJECTIVE)

(Marks : 25)

The figures in the margin indicate full marks for the questions

SECTION-I

2. Indicate whether (15 : sanki) was statements are

True (T) or False (F) by putting a Tick (A) mark :

1. Fill in the blanks: 1×5=5

(a) method is applicable only in case of determinant of order 3.

(a) Copher is a protocol that allows internet user to

(b) The matrix obtained by interchanging the rows and columns is called

BMCA/BC-50:

(c)	The method of obtaining the derivative of a composite function is known as
	COMMERCE
	UNIX operating system which is a fixed part and not accessible to a user is called
	(PART: A-CBJECTIVE)
(e)	connect digital signal to analog signal and vice versa.
	I-MOITO 3
	licate whether the following statements are the (T) or False (F) by putting a Tick (I) mark:
)×1	c=5×1 in the blanks:
(a)	Gopher is a protocol that allows Internet user to move around the globe looking for information in various information centres.
	(T / F)
(b)	Loading DOS into memory is known as debugging the system.

bellacet sumula (Tn/F)

	(c)	a fu	arithmic on more	hich	is t	he pr	rodu	ct or	quot	ien	
				on/	Amsu				(T		F)
((d)	Mat	rix multip	olica	tion	is alv	ways	com	muta	tive	e.
								ntsata.	T	1	F)
(e) Cramer's rule does not apply, if $\Delta = 0$.											
			npotent, i		hall		arlart.		(T		
3.	Гісk		the correc								
((a)		output a is the	t wh	nich	there	e is	1	rofit a		no
		(i)	marginal	cos	t	()				
		(ii)	break-ev	en p	oint		()			
		(iii)	average	cost		()				
	/d w	(iv)	revenue	nde	(od n	at ca	ninar			
((b)	The	unit of n	nemo	ory i	s me	asur	ed by	y col	ns	
		(i)	megabyte		(1)	. 50	San	the	(0)	
		(ii)	kilobyte		()					
		(iii)	gigabyte		()					
		(iv)	terabyte		()					

(c)		computer work is refe			doid		HI B	iter			
(F)	14	host comp)	()		UWJ				
	110000	protocol	esvela	si jo		liamr xir	Mati				
(3)	(iv)	workstatio									
		, if $\Delta = 0$.	ylqqs		ale doc-	ner's ri					
F)											
(d)	A square matrix is called idempotent, if										
	(i)	$A^2 = I$	of spire)**		rico arli		oiT.			
orr	(ii)	$A^3 = 0$	()	ile in	ti gino					
		$A^2 = A$	()		is the					
	(iv)	A'A = I	(1		margii break					
	6				e cost	averag	(101)				
						errovers.	ten bo				
(e)		terminant column ar	nd the	resu	ılt is	y any r		by			
	(i)	the same	()		megab		(ca)			
	(ii)	parallel	(())		dougle					
	(iii)	zero	()	1	te	gigaby	(iii)				
	(iv)	opposite	())	te						

SECTION—II

(Marks: 10)

4. Write short notes on/Answer the following: $2 \times 5 = 1$

(a) Sarrus method

(b) Find the adjoint of $\begin{bmatrix} 2 & 5 \\ 6 & 7 \end{bmatrix}$.

4. Write short netes on/Answer the following:

(a) Samus method

(iv) workstand in the

at a second

miner sensitivities and the results in the sensitivities and the sensitivities and the sensitivities and the sensitivities and the sensitivities are sensitivities are sensitivities are sensitivities are sensitivities and the sensitivities are sensitivities are sensitivities are sensitivities and the sensitivities are sensitiviti

in contact ()

(c) A function has been defined by

$$f(x) = \begin{cases} 2-x & \text{when } 1 \le x \le 2 \\ x - \frac{1}{2}x^2 & \text{when } x > 2 \end{cases}$$

Find $f(1 \cdot 5)$ and f(2).

(d) Binary number system and and nontoned A (a)

$$f(x) = \begin{cases} 2 - x & \text{when } 1 \le x \le 2 \\ x - \frac{1}{2}x^2 & \text{when } x > 2 \end{cases}$$

Find f(1-5) and f(2).

(e) Smart card